

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA 533003, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

III Year - II Semester		L	T	P	C
		3	0	0	3
INTRODUCTION TO ARTIFICIAL INTELLIGENCE & MACHINE LEARNING					

Course objectives:

- 1) To understand the basic concepts of artificial intelligence, neural networks and genetic algorithms.
- 2) To understand the principles of knowledge representation and reasoning.
- 3) To gain knowledge about bayesian and computational learning and machine learning.
- 4) To explore various machine learning techniques.
- 5) To understand the machine learning analytics and deep learning techniques.

UNIT-I:

Introduction: Definition of Artificial Intelligence, Evolution, Need, and applications in real world. Intelligent Agents, Agents and environments; Good Behavior-The concept of rationality, the nature of environments, structure of agents.

Neural Networks and Genetic Algorithms: Neural network representation, problems, perceptrons, multilayer networks and back propagation algorithms, Genetic algorithms.

UNIT-II:

Knowledge Representation and Reasoning: Logical Agents: Knowledge based agents, the Wumpus world, logic. Patterns in Propositional Logic, Inference in First-Order Logic-Propositional vs first order inference, unification and lifting

UNIT-III:

Bayesian and Computational Learning: Bayes theorem, concept learning, maximum likelihood, minimum description length principle, Gibbs Algorithm, Naïve Bayes Classifier, Instance Based Learning- K-Nearest neighbour learning

Introduction to Machine Learning (ML): Definition, Evolution, Need, applications of ML in industry and real world, classification; differences between supervised and unsupervised learning paradigms.

UNIT-IV:

Basic Methods in Supervised Learning: Distance-based methods, Nearest-Neighbors, Decision Trees, Support Vector Machines, Nonlinearity and Kernel Methods.

Unsupervised Learning: Clustering, K-means, Dimensionality Reduction, PCA and kernel.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA 533003, Andhra Pradesh, India DEPARTMENT OF MECHANICAL ENGINEERING

UNIT- V:

Machine Learning Algorithm Analytics: Evaluating Machine Learning algorithms, Model, Selection, Ensemble Methods (Boosting, Bagging, and Random Forests).

Modeling Sequence/Time-Series Data and Deep Learning: Deep generative models, Deep Boltzmann Machines, Deep auto-encoders, Applications of Deep Networks.

TEXT BOOKS:

- 1) Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2/e, Pearson Education, 2010.
- 2) Tom M. Mitchell, Machine Learning, McGraw Hill, 2013.
- 3) Ethem Alpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, 2004.

REFERENCE BOOKS:

- 1) Elaine Rich, Kevin Knight and Shivashankar B. Nair, Artificial Intelligence, 3/e, McGraw Hill Education, 2008.
- 2) Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems, PHI Learning, 2012
- 3) T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, 1/e, Springer, 2001.
- 4) Bishop, C. M., Pattern Recognition and Machine Learning, Springer, 2006.
- 5) M. Narasimha Murty, Introduction to Pattern Recognition and Machine Learning, World Scientific Publishing Company, 2015.

Course outcomes: At the end of the course, student will be able to

- CO1: Discuss basic concepts of artificial intelligence, neural networks and genetic algorithms.
- CO2: Apply the principles of knowledge representation and reasoning.
- CO3: Learn about bayesian and computational learning and machine learning.
- CO4: Utilize various machine learning techniques.
- CO5: Apply the machine learning analytics and deep learning techniques.